Автомобили работавшие на дровах
Использование газа в качестве топлива для ДВС началось задолго до появления бензина. К примеру, читаем у Жюль Верна: «…он прикрутил газовый рожок…» Горел в этом осветительном приборе, конечно же, не природный, а светильный газ, продукт сухой перегонки твердого топлива, получавшийся в газовых генераторах. На нем же работали первые двигатели внутреннего сгорания, в ту пору еще стационарные. Правда, мобильные газогенераторы удалось создать только в период между мировыми войнами, да и вырабатываемый ими газ по составу заметно отличался от светильного. Но в качестве топлива годился.
Этот газ каждый из нас неоднократно видел. Если в костер подбросить много дров, то из него начинает идти обильный белесый дым. Это он и есть. Когда костер разгорается, дым исчезает в пламени – газ сгорает. По составу он представляет собой довольно сложную смесь, основу которой составляют окись углерода, водород, метан и водяной пар. Понятно, что в том виде, в котором светильный газ образуется в костре, он не пригоден в качестве моторного топлива, в первую очередь из-за сильной загрязненности твердыми частицами. Газогенераторная установка готовит намного более чистый и качественный продукт.
В нашей стране в начале двадцатых проводились конкурсные испытания газогенераторных автомобилей, а первым среди наших соотечественников установил генератор на автомобиль ленинградский профессор В. С. Наумов в 1927 г. Научный автотракторный институт (НАТИ) начал заниматься автомобильными газогенераторами в 1928 г., проводя опыты с иностранными моделями Пип и Имберт-Дитрих. 5 марта 1930 г. решением Президиума ВСНХ тракторный отдел ВИСХОМа и газогенераторная лаборатория института древесины и орглеса переводятся в НАМИ. 25 марта в институте из подотдела создается газогенераторный отдел. Разворачиваются работы по применению твердого топлива для автотракторных двигателей, ведется проектирование, постройка и испытания газогенераторных установок для речных катеров и других нужд народного хозяйства.
Первый построенный газогенератор НАТИ-1 работал на обычных дровах. В 1932 г. изготовлена установка НАТИ-3, созданная в тракторном отделе и предназначенная для моторного катера с двигателем ХТЗ или СТЗ. Тогда же появилась и первая автомобильная установка. Она была создана при поддержке общества Автодор. Установка называлась «Автодор-П» и была сконструирована инженерами. И. Мезиным при участии активистов-автодоровцев инженера НАТИ А. Пельцера и Друяна. «Автодор-П» представляла собой газогенератор цельнометаллической конструкции с фурменной подачей воздуха по периферии топливника. Смеситель установки целиком заимствован с НАТИ-3.
По типу «Автодор-П» С. Мезин спроектировал в НАТИ две установки: НАТИ-11 для ГАЗ-АА и НАТИ-10 для ЗИС-5. После испытаний в начале 1936 г. НАТИ-11 была передана для серийного производства заводу «Свет шахтера», выпускавшему до этого шахтерские лампы.
Приобретенный в этой работе опыт позволил создать более совершенные конструкции. Одной из них стала установка НАТИ-Г14, созданная под руководством С.Г. Коссова. Ее серийное производство под руководством инженера НАТИ Н.Г. Юдашкина было налажено на Горьковском автозаводе для автомобиля ГАЗ-42. Он же ранее разработал и организовал производство газовой версии двигателя ГАЗ-А. В проект газогенераторной установки был внесен ряд изменений с учетом технологий ГАЗа, оборудование которого, рассчитанное на массовое производство, резко отличается от оборудования завода «Комета», где эти установки выпускались ранше. С 1939 по 1946 г. было изготовлено 33840 ГАЗ-42.
В 1936 г. была выпущена партия автомобилей ЗИС-13. Их газогенераторные установки отличались размерами и конструкцией отдельных агрегатов, их размещением на шасси и количеством секций грубых очистителей-охладителей. Так, камера сгорания изготавливалась из жаропрочной хромоникелевой стали, но никель в ту пору импортировался и был дорог. ЗИС-13 отличался 12-вольтовой электропроводкой вместо стандартных 6 В. Повышенное напряжение потребовалось в связи с увеличением мощности стартера из-за большей степени сжатия газового двигателя и наличия мощной воздуходувки. В конце 1938 г. стали выпускаться газогенераторные машины ЗИС-21.
Схема газогенератора проста. Загруженное в газогенератор топливо поджигается через воздушный клапан при помощи факела. Воздух, необходимый для газификации, засасывается в камеру через фурменные отверстия благодаря разрежению, создаваемому всасывающим действием двигателя. Причем его количество должно быть недостаточно для полного сгорания топлива. При этом углерод топлива соединяется с кислородом воздуха, образуя углекислый газ (СО2) и окись углерода (СО). Далее они попадают в зону восстановления, где проходит через слой раскаленного угля, лежащего на колосниковое решетке. В результате негорючий СО2 превращается в горючий СО. Входящий в состав топлива водород частично соединяется с кислородом, образуя воду, которая присоединяется к влаге топлива, а остальной выделяется в чистом виде. Под влиянием высоких температур в камере газификации часть влаги соединяется с углеродом, образуя окись углерода и водород. Окись углерода вместе с ранее образованной и полученной в результате восстановления углекислого газа переходит в состав генераторного газа. Водород же, полученный в результате разложения воды, суммируется со свободным водородом, причем часть этого водорода переходит в состав генераторного газа, а другая часть вступает в химическую реакцию с углеродом топлива, образуя метан. Теоретически весь кислород воздуха должен израсходоваться при газификации, однако в действительности часть его сохраняется и переходит в состав генераторного газа. Вода, не разложившаяся при газификации, переходит в генераторный газ в виде пара.
В слое топлива, находящегося непосредственно над зоной горения, происходит процесс сухой перегонки топлива, т. е. нагрев без доступа воздуха. Продуктами сухой перегонки являются древесный уголь или кокс, а также летучие вещества, смолы и влага, выходящие в газо- и парообразном состоянии. Все продукты сухой перегонки в описанном типе генератора целиком проходят через зону горения и восстановления, где подвергаются процессам газификации, несколько более сложным, чем описано, но дающим те же основные продукты. Над зоной сухой перегонки находится зона подсушки, где происходит высыхание топлива. При выходе из генератора газ имеет высокую температуру и засорен золой и частицами угля. В таком виде он не может использоваться в двигателе и перед поступлением в цилиндры должен быть очищен и охлажден.
Топливом для газогенераторов могут служить дрова, торф, бурый каменный и древесный уголь, антрацит, брикеты из растительных отходов и т. п. Все топлива разделяются на два класса: битуминозные, или с высоким содержанием смол и летучих соединений (дрова, торф, бурый уголь, брикеты из соломы и др.), и небитуминозные (древесный уголь, каменноугольный кокс, антрацит и др.). Двигатель внутреннего сгорания может работать только на бессмольном газе, но все легко доступные топлива – дрова, торф, бурый уголь образуют смолы, к тому же каждое топливо имеет свои особенности. Все это ставит перед конструкторами трудноразрешимые задачи при кажущейся простоте и доступности процесса.
По удобству пользования и другим эксплуатационным параметрам древесина является одним из самых заманчивых видов топлива, причем наиболее подходят твердые породы – дуб, бук, береза и др., обеспечивающие получение наиболее прочного древесного угля. Применение мягких пород менее желательно, поскольку они дают большее количество твердых частиц, забивающих агрегаты очистки и проходы для газа. На процесс образования газа сильно влияют размеры и влажность древесных чурок.
Свежесрубленное дерево не годится качестве газогенераторного топлива из-за высокой влажности. Поэтому древесину предварительно сушат. Естественная сушка на открытом воздухе идет очень медленно, и лишь через полтора-два года влажность снижается до 15–20%, приемлемых для газификации. Газогенераторная установка НАМИ-Г78 позволяла использовать чурки с повышенной до 40% влажностью, для чего на двигатель автомобиля устанавливалась специальная воздуходувка. Мощность двигателя при этом снижалась с 46 до 36 л. с.
Торф по свойствам наиболее близок к древесине. но имеет большую зольность, менее прочен и легче. Малозольный торф может использоваться в газогенераторах, предназначенных для работы на древесных чурках. Торф с более высоким образованием золы, как и бурый уголь, требуют особой конструкции камеры сгорания. Кроме этого, высокая зольность обуславливает постепенное снижение мощности двигателя в процессе работы. Газ, получаемый из торфа и бурого угля, содержит также повышенное количество смолы, что нужно иметь в виду при обслуживании установки и двигателя. Весьма нежелательной примесью к бурому углю является сера, которая попадает в газ. В результате ее взаимодействия с конденсатом образуется серная кислота, разрушающая металлические детали установки и двигателя.
Высокая зольность торфа и бурого угля и обильное накопление шлака при газификации этих топлив вынуждают иметь для них камеру газификации большего размера, без горловины или других переходов. Это требование противоречит другим требованиям. Однако специалистам НАТИ (НАМИ) удалось найти удовлетворительное разрешение и для этого противоречия.
Обычно древесный уголь употреблялся только для розжига основного топлива в газогенераторе при первоначальном пуске. Он является очень хорошим топливом, но его использование в обычных установках недопустимо, так как возникают перегрев газогенератора и прогары. Для него НАТИ разработал установки Г21 и Г23, для ГАЗ-43 и ЗИС-31 соответственно. Эти установки проще и легче работающих на чурках - масса НАТИ-Г21 составляла 250 кг, а НАТИ-Г23-310 кг. Они расходовали примерно в полтора раза меньше по массе топлива, их розжиг происходил за 3–4 мин. Однако очистку их газогенераторов, а также очистителя-охладителя приходилось делать через каждые 250 км пробега, в то время как у древесно-чурочных газогенераторов через каждые 1000 км.
В марте 1939 г. XVII съезд ВКП(б) поставил перед машиностроителями задачу: «Перевести на газогенератор все машины на лесозаготовках, а также значительную часть тракторного парка сельского хозяйства и автомобильного парка». Военные операции съедали основную массу производимого в стране топлива. Только в боевых действиях против Финляндии было задействовано около 100 тыс. автомобилей. Тем временем по выпуску грузовиков и мощных гусеничных тракторов СССР вышел на первое место в Европе. Экономику страны постоянно лихорадило, топлива для автотранспорта катастрофически не хватало. Война лишь довела ситуацию до логического конца.
В военные годы ЗИС-21 и ГАЗ-42 эксплуатировались не только в тылу, но и на фронтах. В частности, половина транспортных автомобилей блокадного Ленинграда, Ленинградского фронта и Краснознаменного Балтийского флота была оснащена газогенераторными установками. Для установки на обычные грузовики были разработаны установки НАТИ-Г69 для ЗИС-5 и НАТИ-Г59 для ГАЗ-АА. К концу войны в СССР эксплуатировалось 200 тыс. газогенераторных автомобилей, тракторов, передвижных электростанций, катеров, мотовозов и других установок. Во время Второй мировой войны газогенераторные автомобили получили также распространение в Германии, Франции, Великобритании, Швеции, Финляндии, Китае, Японии, Австралии, Индии.
Эксплуатация газогенераторных машин осложнялась нехваткой кондиционного топлива из-за отсутствии достаточного количества топливозаготовительных баз, хотя решение об их строительстве было принято еще до войны. Вдобавок они нередко поставляли чурки повышенной влажности, что вело к выходу из строя дорогостоящего газогенераторного оборудования.
После войны Уральский автомобильный завод в 1946–1952 гг. выпускал модернизированный УралЗИС-21А, а с 1952 г. УралЗИС-352 с установкой НАМИ-Г78. С 1953 г. Минский тракторный завод выпускал трелевочный трактор КТ-352Т. Это были последние серийные газогенераторы.